侵权投诉
订阅
纠错
加入自媒体

DARPA挑战赛,当代自动驾驶产业的起源

2022-11-21 14:49
vehicle公众号
关注

DARPA挑战赛获奖车辆技术

最终完成的比赛的有:

卡内基梅隆大学的Boss 用时4:10:20第一名; 在整个过程中平均每小时大约 14 英里(22.4 公里/小时)赢得200万美金。

斯坦福大学的Junior 用时4:29:28第二名;在整个过程中平均每小时约 13.7 英里(22.0 公里/小时)赢得100万美金。

弗吉尼亚理工大学的Odin用时4:36:38第三名;在整个过程中平均速度略低于每小时 13 英里(21 公里/小时).

麻省理工学院的Talos用时大约6个小时第 4 名

另外还有宾夕法尼亚大学的Little Ben和康奈尔大学的Skynet超过 6 小时限制,成功完成挑战线路。所以共计 6 支队伍完成线路。

下图为获奖以及完成比赛的车辆照片,是不是和我们常常在路面上看到的自动驾驶车辆很类似,头顶着激光雷达?另外所有参赛者的感知套件以及机构都非常类似。

根据DARPA的规定,以及提供的路线网络定义文件(RNDF)其实可以认为对于定位,参赛者统一采用其地图(可以认为是高精地图),定位的技术方案也是一样就是利用IMU,GPS还有RTK,可以看到第一名boss的传感器套件里面有Trimble也就是RTK高精定位供应商,目前不少厂家在用。据文献了解当时地图精度0.1米也就是分米,当前商用高精地图也就是厘米级别。

对于感知传感器方面,可以了解下第一名boss的传感器套件

1个最大探测距离70米的机械式360度扫射激光雷达-Velodyne HDL-64 LIDAR (HDL) ,视场角FOV 360 × 26 0.1度角分辨率。

6个 最大探测距离80米激光雷达SICK LMS 291-S05/S14 LIDAR (LMS) ,视场角FOV 180/90 × 0.9 度,1/0.5角分辨率。用来识别道路以及车道线。

2个探测距离达300m的激光雷达 IBEO Alasca XT LIDAR (XT),视场角FOV 240 × 3.2度。

2个探测距离达150m的激光雷达Continental ISF 172 LIDAR (ISF),视场角FOV 12 × 3.2度。

5个大陆的Continental ARS 300 Radar (ARS)毫米波雷达,FOV 60/17 × 3.2 度,最大探测距离60/200米。显然毫米波雷达是用来探测道路中其他运动车辆。

2个高速黑白摄像头Point Grey Firefly (PGF),视场角为45度。应该是用来识别道路的车道线。

1个GPS+IMU高精定位系统Applanix POS-LV 220/420 GPS/IMU (APLX)

其实查阅资料,基本上完成比赛的6个车采用相同的传感器方案,有的差异只是多少个,放的位置罢了。所以这里可以回到文章讲到的DARPA挑战赛的大背景是Strategic computing program战略计算计划,更多的是挑战基于计算,芯片的软件应用。

对于计算,第一名Boss使用了一个带有10个2.16-GHz Core2Duo处理器的Compact PCI机箱,每个处理器有2 GB内存和一对千兆以太网端口。每台计算机都从一个4 GB闪存驱动器启动,降低了磁盘故障的可能性。其中两台机器还安装了500-GB硬盘用于数据记录。每台计算机还通过定制的每秒脉冲适配器板进行时间同步。也有用8个苹果MAC迷你电脑的。而其他几家也基本差不多,多个计算机运算,整车汽车后备箱塞满了计算机,其实现在自动驾驶开发的工控机类似了。

对于软件方面,基本上以Unix/Linux 的系统为自动驾驶的运行系统,在商用系统方面Unix/Linux有着工程师们熟悉的各种库,接口和算法调用,来实施感知,规划,当前自动驾驶依然一样。最后是显示,毕竟还需要操作员和监控员,所以显示基于QT的图形用户界面(GUI),为操作员、工程师或测试人员提供了方便,用于启动和停止软件、查看状态/健康信息以及调试正在执行的各种任务的工具。

另外通过对参赛车辆的车身喷涂广告,可以看到计算机的英特尔,我们现在激光雷达的先驱ibeo,Velodyne;视觉算法上车的巨头Moileye,视觉传感器安森美;电子架构专家Vector,汽车雷达巨头们等等。

最后尽管DARPA挑战赛从完成的速度上来看,离实际使用尚有距离,但它确实实现了一些特定的技术目标,例如地面导航的目标。特别是卡内基梅隆大学的自主陆地车辆计划及其姊妹Navlab项目,为随后的许多无人驾驶车辆计划奠定了科学和技术基础,例如 Demo II 和 III 计划(ALV 是演示 I)、感知器和DARPA 大挑战。SCI ALV 计划首创的摄像头加激光雷达和IMU惯性导航装置的使用构成了几乎所有商用无人驾驶汽车的基础。它还在相当大的程度上帮助推进了计算机硬件的技术水平。

DARPA挑战赛对当前自动驾驶的影响

2007 年 DARPA 城市挑战表明,无人驾驶车辆技术比您想象的更接近。虽然这项技术存在很多缺陷,但对于人类司机来说也是如此。最终现代汽车自动驾驶的技术基础奠定了:

感知,基于激光雷达,摄像头,毫米波雷达等传感器的算法环境感知。

规划,通过各类机器学习的算法进行路径,路线的规划。

定位,基于GPS,通过RTK,IMU结合高精地图(DARPA官方提供的RNDF在线地图)定位。

执行,DARPA的参赛人员花了大量的时间对当时基于液压系统的执行架构转向,制动,换挡进行电气化改装,此项工作当时就筛选了不少人,但当代电动汽车已经全面完全电气化,所以天然奠定电子化执行的基础,也就是当前火热的词电控底盘概念。

后来城市挑战赛中第一名卡内基梅隆大学总结了,当时自动驾驶技术走向商业的一些产业约束有:

商业激光雷达相当昂贵

雷达是高档汽车的选项

摄像头已经被未来汽车考虑应用

计算单元需要越来越快,同时安全运行很重要。

所以大家可以看到以上2007年总结的观点,可以对应到今天,也就是当前自动驾驶硬件发展的一些拦路虎或者大家相互竞争的点。

激光雷达,在中国制造产业的优势引导下,成本持续下探。凭借着受光线影响小、高分辨率等特点成为稳健、高安全自动驾驶必备传感器。另外其在定位方面的独特作用也在各种泊车应用场景大放异彩。目前激光雷达不但“上车了”而且还在“差异化”发展,例如前向远视激光雷达,侧向补盲等。

雷达也就是普通毫米波雷达。已经在辅助驾驶时代普及,目前根据其产业成本优势,在持续进化朝着4D以及更高精度方向发展。

而当时刚刚兴起的摄像头,在互联网时代催生的海量图片以及视频的大数据下,伴随着视觉人工智能算法迅猛发展(80年代互联网还没有大批量民用,所以当时美国战略计算计划的AI缺少广泛参与以及海量数据和应用基础),所以摄像头犹如我之前文章《视觉为王-小鹏以及特斯拉的自动驾驶方案》讲到越发重要。

计算单元,算力TOPs不断的内卷,从个位数到几千的落地,已经给汽车电脑也就是Domain域控制器,不仅仅是计算,还有内存、硬盘、通讯、图像解码等等芯片带来巨大的市场。

写在最后

当前自动驾驶依然还在产业落地的路途中,而当年第一名卡内基梅隆大学总结的几个约束,其实在当代依然存在;而这些约束本质上又回到DARPA自动驾驶挑战赛的母计划DARPA Strategic computing program(战略计算计划)先进计算机硬件和人工智能AI的研究。在自动驾驶产业中,不管是感知用的芯片,计算用的芯片都属于此类。

而当前地缘政治抬头下,各家对于数据的地缘化,对芯片以及各个产业的逆全球化,已经给自动驾驶产业化带来了更大的挑战,这可能也就是当前自动驾驶产业寒意浓浓的根本源头。但这种地缘化的时代,也同样是催生驱动技术的发展,不过这种发展是地缘化,个体化的。例如DARPA开启于苏美冷战时刻,助力美国计算科技崛起,所以冬天是一个好积蓄的时间点,对于国家,企业,个人都一样。

作为制造和市场都异常巨大的中国,要赢得智能自动驾驶时代可能还需要在类似美国的DARPA Strategic computing program(战略计算计划)上多下功夫。

参考文章以及图片

Vehicles rybski web presentation PUBLIC DISTRIBUTION-卡内基梅隆大学

美国战略计算计划 - 机器智能

DARPA城市挑战1-5名技术方案

*未经准许严禁转载和摘录

       原文标题 : 当代自动驾驶产业的起源-DARPA挑战赛

<上一页  1  2  
声明: 本文由入驻维科号的作者撰写,观点仅代表作者本人,不代表OFweek立场。如有侵权或其他问题,请联系举报。

发表评论

0条评论,0人参与

请输入评论内容...

请输入评论/评论长度6~500个字

您提交的评论过于频繁,请输入验证码继续

暂无评论

暂无评论

    文章纠错
    x
    *文字标题:
    *纠错内容:
    联系邮箱:
    *验 证 码:

    粤公网安备 44030502002758号