为什么说氢燃料电池车是混动汽车?前景如何?
“中国已经形成了电-电混合的技术优势,适合燃料电池技术的特点。”
全国政协副主席、中国科学技术协会主席、前科技部部长万钢,是氢燃料电池技术路线的支持者。他在论述中国氢燃料电池技术的时候,经常提及前面这个论断。
氢燃料电池既然这么好,为啥还要混合驱动汽车?中国搞“电-电”混动,是不是因为技术水平太差了?现在能否判定氢燃料电池技术的前景?
我们逐个来分析分析。
1、电电混合的由来
汽车行驶在道路上,行驶状态不断变化,上下坡、加减速,需要发动机/电动机输出不同的功率。如果一辆燃料电池汽车,通过燃料电池发电直接驱动电机,就需要燃料电池不断变化功率载荷。
然而,燃料电池似乎并不太喜欢变载,变载必须让进气(氢气、空气)等外部条件随之变化。
从燃料电池电堆(燃料电池系统最核心的发电单元)的角度看,电堆的主歧管流道、入口流道、分配流道、(反应)微流道等等,都是基于某一工况范围设计的。现在电堆功率越设计越大,动辄百千瓦上下。迫于对功率密度的需求,往往要通过大电流密度实现。这让通气条件在全工况下适应非常困难。在负载过大或过小时,电堆可能只能短时间工作,以避免因水热问题造成损坏。
从系统角度讲,燃料电池的辅助系统(BOP,Balance of Plant)似乎也不太喜欢变载。比如空压机会有最合适的一段输出区间,此区间空压机效率较高,且工作稳定。另外,比如更简单的管路,由于管径固定,如果气体量太小,那么气体压力无法控制;如果气体量太大,那么会有很大的压降损失,甚至造成密封失效。
从能量角度讲,所有“体外循环”的电池,在工作过程中,都会有能量的损耗。因为维持电堆运行的供气系统、冷却系统都会消耗能量。当电堆出力较低时,BOP待机功耗相对纯电动系统更大(如同汽车怠速的效果)。同时电堆低功率出力时,为了平衡流场设计和水热管理,往往进气计量数更大。系统能效整体降低。
现代FCV
虽然燃料电池不喜欢变载,但并不代表不能变载。可以通过系统管理来实现。但这是个及其复杂的过程。当系统要求电堆出力提高时,氢气和空气的进气量随之提高,电堆电流密度上升,电堆输出功率上升(但可能伴随效率下降),发热量也随之上升。冷却系统控制冷却泵增加循环水量。氢循环泵循环量增大,阴极(或阳极)排气量和排水量也随之发生变化。
与此同时,电堆单池之间的差异也可能随之增大,系统会采取诊断和保护措施……
可能就是上坡跟车时的一脚油门,系统就要做出一连串的复杂动作。如果哪一步没跟上,燃料电池就像一台涡轮迟滞明显的早起涡轮增压发动机,甚至直接故障。同时,频繁的功率变化也会让燃料电池的寿命加速衰减。
因此,燃料电池整套管理机制,要设计的相当严谨。如果说传统电动车是电和热的组合,那么燃料电池则至少多出两个维度:气体(氢气和空气)和水(氢氧反应产生的水以及冷却液)。电、热、空、氢、水五场合一,相互联动。再加上日益增大的单堆功率,让系统的控制难度呈几何级数上升。燃料电池的成本当中,系统成本至少占三分之二,也是可以理解的。
电电组合的出现,可以大大降低系统管理的难度。因为大部分情况下,通过电池可以减小电堆功率的调节范围。当前,电电混合的常见形式有三种。分别是能量存储、功率平衡、增程续航。
(1)“丰田模式”:能量存储型
在丰田的系统中,搭载了镍氢电池以实现电电混合。而镍氢电池的作用,主要用于能量的回收储存,这是丰田的表述。能量存储并非目的,将能量转化成可用动力才是关键。因此,我认为“丰田模式”的电电混合,仍是以“削峰填谷”作为目标。
丰田选择镍氢电池实现电电组合,我想多半是来自于丰田在普锐斯上技术的积累。在普锐斯上,丰田配置了168个单体电压为1.2V的镍氢电芯,总储能容量为1.3kWh,藉此保证普锐斯的发动机始终在最“佳”的工作状态。
在城市行驶的工况下,普锐斯的管理系统,将电池的充放电深度控制在很小的范围之内,而仪表盘上的SOC显示,只是电池可用范围上的消耗百分比。浅充浅放的使用场景,保证了镍氢电池的寿命。
Mirai借鉴了相似的结构。将镍氢电池与燃料电池耦合相连。在刹车时,回收能量存储与电池当中。通过燃料电池发电和能量回收,始终保证镍氢电池在“合适”的SOC范围。在系统变载时,镍氢电池向系统输出瞬时功率,让系统更加平顺。
同时,镍氢电池属于“水系”电池,因此在使用过程中,相比锂电池,在出现故障时,电池本体起火的可能性更低。因此,就安全性来说更胜一筹。
简单总结丰田的电电混合模式,从表面上看,是对于能量的回收。但是其本质,还是“削峰填谷”,从而让燃料电池工作在最佳的状态。
(2)本田模式:功率平衡型
本田对燃料电池汽车的开发,可以追溯到上世纪的80年代。第一代FC样机的实验,实在奥德赛上完成的。时隔三十年,本田的Clarity,又以全新的姿态,展现FCV的技术。
本田的核心技术,是将燃料电池发动机集成到和V6标准发动机相同的大小。这让Clarity在布置上,可以大量借鉴传统汽车的结构,降低设计风险。
本田的电电混合系统,由燃料电池、锂离子电池通过本田特有的部件FCVCU进行连结。
燃料电池电压控制器(FCVCU)是实现“本田模式”的关键部件,它是一种高效的电压调节装置。应用SIC-IPM,(我对这个技术的翻译是碳化硅智能电源模块,不知道官方有没有更炫的名字。)让本田以极小的体积实现对燃料电池电堆电压的转化。
下图是FCVCU的工作原理图。相比丰田强调的回收制动能量,本田的电电混合技术更加强调对功率的提升。本田通过FCVCU将燃料电池电压提升至500V,燃料电池可以和锂离子电池同时出力。在最高功率时,锂电池出力占整个系统的30%。
揣测本田的设计思路,就是通过电压的控制,增加锂电池对系统出力的比例,反向也能让燃料电池出力范围变化更加缓和。
(3)增程续航
市面上还有另外一种燃料电池和锂电池混合的电电混动技术:即燃料电池只为锂电池充电,锂电池单一驱动电机。我曾在展会上见过类似的应用。燃料电池在几个相对固定工况下工作,使控制难度进一步降低。但是这种纯粹以“增程”为目的的FCV应用,本质上是牺牲功率换取续航的做法。
总结一下电电混动的技术,简单说就是储能电池像一个蓄水池般不断地充放调整,以平衡系统的功率特性和容量特性。各家技术的区别,在于所配备“蓄水池”的大小不同。如果单从技术上来评价,丰田仅仅配备了2kWh的镍氢电池,在燃料电池管理技术上来说,最为先进。但也要从成本和寿命上综合考虑。
最新活动更多
-
11月29日立即预约>> 【上海线下】设计,易如反掌—Creo 11发布巡展
-
11月30日立即试用>> 【有奖试用】爱德克IDEC-九大王牌安全产品
-
即日-12.5立即观看>> 松下新能源中国布局:锂一次电池新品介绍
-
12月12日预约直播>> 友思特为新能源电池行业聚能的视觉与光电方案
-
即日—12.20点击申报>> 维科杯·OFweek 2024(第三届)储能行业年度评选
-
即日-12.20立即参评>> 维科杯·OFweek 2024锂电行业年度评选
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论