智能汽车和自动驾驶的终局会如何?
声明:本文基于公开资料撰写,仅作为信息交流,不构成任何投资建议。
本文主要探讨乘用车自动驾驶的技术和商业路径,商用车的自动驾驶并不在本文里讨论。
目前,乘用车自动驾驶的公司大概可以分为三类。第一类是类似于苹果(NASDAQ:AAPL)的闭环系统,关键组成部分比如芯片和算法都自己做,特斯拉(NASDAQ:TSLA)是这么干的,部分新势力车企也希望逐步走上这条路。第二类则是类似于安卓的开放系统,有的厂家做智能平台,有的厂家做汽车,比如华为和百度
(NASDAQ:BIDU)有这方面的意向。第三类,则是robotaxi(无人驾驶出租车),比如Waymo等公司。
本文会主要从技术和商业的发展角度分析这三种路线的可行性,并探讨一些新势力造车或自动驾驶企业的未来。不要看轻了技术,对于自动驾驶而言,技术就是生命,关键的技术路径就是战略路径。所以本文也是对自动驾驶战略不同路径的探讨。
01
软硬件一体化的时代已经到来,以特斯拉为代表的"苹果模式"是最佳路径
在智能汽车尤其是自动驾驶领域,采用苹果闭环模式,既能让厂商更容易优化性能,又能更快速的对消费者需求做出反馈。
首先讲性能问题,性能对于自动驾驶至关重要。超级计算机之父Seymour Cray曾说过一句很有意思的话,“Anyone can build a fast CPU. The trick is to build a fast system”。
随着摩尔定律逐渐失效,简单的依靠在单位面积上增加晶体管数量来增加性能的方法,迟早是不可行的。而且因为面积和能耗的限制,芯片的规模也是有限制的。当然,目前特斯拉的FSD HW3.0(FSD全称为Full Self-Driving,即全自动驾驶)还只是14nm制程,还有提升的空间。
目前绝大多数的数字芯片是基于存储器和计算器分离的冯诺伊曼架构设计,这造就了计算机(包括智能手机)的整个系统体系。从软件到操作系统到芯片,都深受其影响。但是冯诺伊曼架构并不完全适合于自动驾驶所依赖的深度学习,需要改进甚至突破。
比如存在计算器跑的比存储器快的“内存墙”,这会导致性能问题。而类脑芯片之类的设计,确实有架构上的突破,但跨越的太远,未必能很快应用上。而且图像的卷积网络可以转化为矩阵运算,未必真正适合类脑芯片。
所以,随着摩尔定律和冯诺伊曼架构都遇到瓶颈,未来的性能提升,主要需要通过Domain Specific Architecture(DSA,特定领域体系结构,可指代专用处理器)来实现。DSA由图灵奖获得者John Hennessy和David Patterson提出,是往前跨越几步又跨越的不过分远的创新,是马上就能实践的思路。
我们可以从宏观上理解一下DSA的思路。通常目前的高端芯片有几十亿到上百亿个晶体管,这些数量巨大的晶体管如何分配职能如何连接如何组合,对于具体某个应用的性能影响很大。未来需要从软硬件的整体着眼,打造“fast system”,依靠优化调整结构取胜。
再举个例子讲讲DSA。实际上手机和终端生态,某种程度上也在采用DSA的思路。比如手机上也有GPU(图形处理器),那是单独处理视觉数据的。手机上也有神经网络加速器,那是为深度学习服务的。苹果最新推出的Mac上的M1芯片,也是走的这个思路,有GPU,有深度学习加速器,据评测,对许多特定应用的性能提升相当大。
当然,智能汽车的DSA道路,会走的更彻底更深入,因为自动驾驶是特定芯片跑特定应用,不用考虑生态的问题。
特斯拉的FSD HW就是专门为Autopilot设计的,可以尽情地在软硬件两端优化。比如卷积运算占比非常高,那就可以对卷积运算并行化处理并特意去优化,这样可以极大提升整体的性能。
根据特斯拉提供的数据,以一个特定的处理摄像头数据的神经网络为例,该神经网络处理一帧图像需要350亿次运算,传统的CPU每秒只能处理1.5帧图像,压根不能满足自动驾驶的需求,而特斯拉的FSD HW 3.0每秒能处理2100帧,这才能够满足目前的需求。
说明一下,依照这个数据,FSD HW 3.0总计算能力是35G*2100=73.5TOPS(1TOPS代表处理器每秒钟可进行一万亿次),考虑到数据的一些四舍五入或者精度上的误差,基本是符合特斯拉宣称的72TOPS的数据的。
无论是云端的训练,还是终端的推理,都可以通过DSA进行很好的性能优化。比如特斯拉的DOJO是针对云端的训练,这不光是从算法到芯片,还需要分布式机器学习。而FSD HW 3.0则负责终端的推理,性能比竞争对手的更强劲。
闭环模式有利于快速响应消费者需求。比如,算法和数据的分离,会导致改进起来更困难。各种corner case(这里特指极端情况),有的可能需要同时调整算法和数据,那么不同公司的协调就会成为问题。
总的来说,特斯拉采用的闭环模式,既能帮助提高性能,又能快速响应消费者需求,是目前自动驾驶的最佳方案。

最新活动更多
-
3月27日立即报名>> 【工程师系列】汽车电子技术在线大会
-
即日-4.22立即报名>> 【在线会议】汽车腐蚀及防护的多物理场仿真
-
4月23日立即报名>> 【在线会议】研华嵌入式核心优势,以Edge AI驱动机器视觉升级
-
4月25日立即报名>> 【线下论坛】新唐科技2025新品发布会
-
限时免费试用立即申请>> 东集技术AI工业扫描枪&A10DPM工业数据采集终端
-
4月30日立即参与 >> 【白皮书】研华机器视觉项目召集令
-
10 关税漩涡中的汽车供应商
发表评论
请输入评论内容...
请输入评论/评论长度6~500个字
暂无评论
暂无评论